AI Roadmap Workbook for Non-Technical Business Leaders
A clear, hype-free workbook showing where AI can actually help your business — and where it won’t.
Dev Guys Team — Smart thinking. Simple execution. Fast delivery.
The Need for This Workbook
In today’s business world, leaders are often told they must have an AI strategy. AI discussions are happening everywhere—from vendors to competitors. But business heads often struggle between two bad decisions:
• Accepting every proposal and hoping it works out.
• Rejecting all ideas out of fear or uncertainty.
It guides you to make rational decisions about AI adoption without hype or hesitation.
You don’t need to understand AI models or algorithms — just your workflows, data, and decisions. AI should serve your systems, not the other way around.
Using This Workbook Effectively
Work through this individually or with your leadership team. The purpose is reflection, not speed. By the end, you’ll have:
• A prioritised list of AI use cases linked to your business goals.
• A visible list of areas where AI won’t help — and that’s acceptable.
• A realistic, step-by-step project plan.
Treat it as a lens, not a checklist. If your CFO can understand it in a minute, you’re doing it right.
AI strategy is just business strategy — minus the buzzwords.
Starting Point: Business Objectives
Focus on Goals Before Tools
Too often, leaders ask about tools instead of outcomes — that’s the wrong start. Start with measurable goals that truly impact your business.
Ask:
• Which few outcomes will define success this year?
• Where are mistakes common or workloads heavy?
• Which processes are slowed by scattered information?
AI is valuable only when it moves key metrics — revenue, margins, time, or risk. Ideas without measurable outcomes belong in the experiment bucket.
Start here, and you’ll invest in leverage — not novelty.
Understand How Work Actually Happens
Understand the Flow Before Applying AI
AI fits only once you understand the real workflow. Simply document every step from beginning to end.
Examples include:
• New lead arrives ? assigned ? nurtured ? quoted ? revised ? finalised.
• Customer issue logged ? categorised ? responded ? closed.
• Invoice issued ? tracked ? escalated ? payment confirmed.
Every process involves what comes in, what’s done, and what moves forward. AI belongs where the data is chaotic, the task is repetitive, and the result is measurable.
Step 3 — Prioritise
Assess Opportunities with a Clear Framework
Choose high-value, low-effort cases first.
Think of a 2x2: impact on the vertical, effort on the horizontal.
• Quick Wins — high impact, low effort.
• Reserve resources for strategic investments.
• Minor experiments — do only if supporting larger goals.
• Delay ideas that drain resources without impact.
Consider risk: some actions are reversible, others are not.
Begin with low-risk, high-impact projects that build confidence.
Laying Strong Foundations
Fix the Foundations Before You Blame the Model
Messy data ruins good AI; fix the AWS base first. Clarity first, automation later.
Design Human-in-the-Loop by Default
Keep people in the decision loop. Build confidence before full automation.
Common Traps
Steer Clear of Predictable Failures
01. The Demo Illusion — excitement without strategy.
02. The Pilot Problem — learning without impact.
03. The Full Automation Fantasy — imagining instant department replacement.
Choose disciplined execution over hype.
Partnering with Vendors and Developers
Frame problems, don’t build algorithms. State outcomes clearly — e.g., “reduce response time 40%”. Share messy data and edge cases so tech partners understand reality. Agree on success definitions and rollout phases.
Request real-world results, not sales pitches.
Evaluating AI Health
Indicators of a Balanced AI Plan
Your AI plan fits on one business slide.
Your focus remains on business, not tools.
Finance understands why these projects exist.
Quick AI Validation Guide
Before any project, confirm:
• Which business metric does this improve?
• Which workflow is involved, and can it be described simply?
• Is the data complete enough for repetition?
• Who owns the human oversight?
• How will success be measured in 90 days?
• If it fails, what valuable lesson remains?
The Calm Side of AI
AI done right feels stable, not overwhelming. Focus on leverage, not hype. When executed well, AI simply amplifies how you already win.